NEKij;

The Neki32 Software Development Manual

Nekisoft Pty Ltd
June 27, 2025

Contents

1

Introduction 3
1.1 What is Neki32? 3
1.2 Technical Specifications 4
1.3 Overview of a Game, 5
1.3.1 Gamecards 5
1.3.2 Executable and environment 5)
1.3.3 Hardware features. 5
The boot process 6
2.1 The beginning of the media 6
2.2 The boot catalog 7
2.3 The game executable L 8
2.4 Failures 8
The instruction set 8
Signals 9
Nonvolatile memory system (NVMs) 9
System calls 10
6.1 Basics 10
6.1.1 _scnone 10
6.1.2 _scpause 10
6.1.3 _scprint 11
6.2 Game input/output 11
6.2.1 _sc_gettickso 11
6.2.2 _scgfx flip 12
6.2.3 _sc_sndplay e 12
6.2.4 _sc_input 13
6.3 Dataaccess 14
6.3.1 _sc.disk_read2ko 14
6.3.2 _sc_disk_writel2k 15
6.3.3 _SCNVIM_SAVE . . . v v v v v et e e e e 15
6.3.4 _sconvm_load 16
6.4 Processsetup 16
6.4.1 _sc_env_save e e 16

6.4.2 _sc_env_load
6.4.3 _scmexec_appendo
6.4.4 _scmexec.applyo
6.4.5 _sc_exit
6.5 Errorcodes
6.6 System calls by number o o000
Timing
7.1 Timing sourceso
7.1.1 Timing ticks elapsedo
7.1.2 Timing sound samples played
7.1.3 Timing video frames flipped
7.2 Not timing sources L e
7.2.1 Not a timing source: The CPU
7.2.2 Not a timing source: input events from _sc_input
7.2.3 No rational relationships
The C SDK
81 SDK Contents
8.1.1 Compiler Wrappers
812 CRuntime.
8.1.3 Picolibc
8.1.4 PVMK OSlibrary
8.1.0 Updates Package
8.1.6 SDL System-Call Shims
Examples
9.1 Development workflows 0oL
9.1.1 Just Assembly
9.1.2 Assembly and some Data
9.1.3 Assembly Accessing a Filesystem
9.1.4 Adding some Freestanding C.
9.1.5 Using the C SDK Instead
9.2 Systemcallusage Lo
9.2.1 Reading inputs L
9.2.2 Double-buffered animation
9.2.3 Triple-buffered animation
9.2.4 Saving Saves u e e
9.3 SDK features

20
20
20
20
20
21
21
21
21

22
22
22
22
22
22
23
23

9.3.1 Writing to fileso 27

10 Common errors 27
10.1 System call failureso 27
10.1.1 0x00 _scnone o e 28
10.1.2 0x01 _scpause v o v v v 28
10.1.3 0x02 _sc_getticks 28
10.1.4 0x07 _sc_exit e 28
10.1.5 0x08 _sc_env_save v v v v i e 29
10.1.6 0x09 _sc_env_load 29
10.1.7 0x30 _scgfx_flip« . 29
10.1.8 0x50 _sc_input 29
10.1.9 0x60 _scsndplay o o i 30
10.1.100x81 _sCnNVM_SAVE . . . v« v v v e e e e e 30
10.1.110x82 _scnvm_load 30
10.1.120x91 _sc_disk_read2k 30
10.1.130x92 _sc_disk_write2k 30
10.1.14 0xA1 _scmexec_appendo 31
10.1.150xA2 _scmexec_apply o oo 31
10.1.16 0xBO _sc_print 31

10.2 Crashes 31
11 Secret Codes 32
11,1 At power-on L 32
11.2 At the boot menu 33

Preface

Numbers are in decimal (base-10) unless otherwise stated.
Numbers beginning with a 0x prefix are hexadecimal (base-16).

(©2024 Nekisoft Pty Ltd
Australian Company Number 680 583 251

1 Introduction

Thank you for your interest in developing software for Neki32!

1.1 What is Neki32?

Neki32 is a 32-bit game console that delivers a focused experience to both gamers
and game developers. The system runs on an ARM9 CPU clocked at 300MHz. Up
to 24MBytes of memory is available for the game process. Software-rendering is used
to produce bitmapped graphics and digital sound.

An operating system hides details of the hardware. Its custom kernel is called
“PVMK?”, the Puny Video Machine Kernel. The system interface is kept to a mini-
mum, to ensure plug-and-play compatibility.

The Neki32 console itself is powered by USB-C. It outputs audio and video to an
HDMI TV. Games are distributed on read-only SD cards. There are four controller
ports, compatible with Genesis and Mega-Drive controllers. There is 4MBytes of
internal memory for savegames of 128KBytes per game.

(A real, live Neki32)

1.2 Technical Specifications

e Power input:

— Connector: USB-C compatible!
— Voltage: 5V + 10%
— Current: < 100mA

e A/V output:

— Connector: HDMI compatible?

— Resolution: 640x480, or 320x240 with pixel-doubling
— Refresh rate: 60Hz

— Aspect ratio: 4:3

— Color depth: 16 bits per pixel, RGB565

— Audio format: 48KHz 16-bit stereo LPCM

e User inputs:

— Connector: 9-pin D-Sub (male) x4
— Layout: 8-way directional pad, 6 face buttons, 2 menu buttons

— Protocol: Mega-Drive compatible?
o Game media:

— Connector: SD/MMC card (full-size)
— Capacity: 16MBytes to 2TBytes
— Format: El-Torito bootable image, platform 0x92

!The Neki32 console is not USB™-certified but should work with any USB-C power supply.
2Tt is is also not HDMI™-certified but should work with any HDMI television.
3Mega-Drive™ is owned by Sega and used without permission. They are unaffiliated with us.

1.3 Overview of a Game

A Neki32 game is quite simple. It is an SD card containing a program to run and
possibly other data. Very little is necessary to get code running.

1.3.1 Game cards

The card is read-only and formatted much like an optical disc. It contains an El
Torito boot record for platform 0x92. The El Torito boot record points at the
executable file for the game.

1.3.2 Executable and environment

The game executable is a flat, O-mapped binary image of the game’s initial memory
content. For example, if the game executable is 3MBytes in size, the system will
load it into virtual memory addresses 0 to 3145727. The game process is initially
24 megabytes in size, and the rest will be filled with 0x00 bytes. The zero page,
afterward, is inaccessible. An access of address 0 to 4095 always faults. On disk,
a small magic number is placed at the start of the executable instead (the 8-byte
string constant NNEARM32 and the 8-byte little-endian address 0x1000).

The game starts execution at address 4096, the first accessible address. All
registers are zeroed on entry. The process starts in ARM mode but may switch to
Thumb mode at its choice.

System-calls can be made using a udf 0x92 instruction. The call number is
placed in r0, while parameters are placed in r1 through r5. Return values are left
in rO after the call is performed. System-calls are nonblocking and can be retried
until completion or interleaved with other operations. System-calls must be made
from ARM mode, not Thumb mode.

Processor exceptions caused by game code are fatal. A valid game program
should not cause exceptions. Behind the scenes, exceptions are delivered to the
game process as a signal. However, game processes are not allowed to handle these
signals themselves. The system will stop for debugging or terminate the process, as
appropriate.

1.3.3 Hardware features

Games can make system-calls to access hardware features.

Images can be displayed from a linear framebuffer, at least 4-byte-aligned, any-
where in the process address space. The front-buffer can be changed only at the
start of vertical blanking. The kernel will set aside the last requested address and

make the flip when vblank starts. The video scanout loads 16-bit RGB565 pixel data
directly from process memory. Framebuffers should avoid crossing 1MByte address
boundaries, for best performance.

Sound can be played using PCM data, at least 4-byte-aligned, anywhere in the
process address space. The kernel sets aside a copy of the data and plays it back
using DMA. Only 16-bit 48KHz left-then-right stereo is supported.

Input can be read using a system-call to a buffer, at least 4-byte-aligned, anywhere
in the process address space. Input is retrieved from up to 4 Megadrive-compatible
gamepads plugged into the system. The ports are labelled “A”, “B”, “C”, and “D”.
Input is delivered as a stream of events tagged with these characters as the first byte.

A feature like exec () is available for replacing the running program with an-
other. The kernel keeps a separate address space ready for a process to load, and
then move into place. Arguments and environment variables can be preserved in a
kernel-side buffer during this process.

Nonvolatile memory is available inside the console for savegames. 4MBytes are
dedicated to the NVM savegame system, split into records of 128KBytes. Games are
allocated a NVM record, on boot, if their card has a valid Volume ID that doesn’t
start with / =’ . Saving and loading an NVM record are both atomic operations. The
contents of the NVM record is replaced entirely on a successful save. Interrupted
saves do not corrupt the existing record.

2 The boot process

The boot process treats the game card like an optical disc - it is read-only and
organized in naturally-aligned 2048-byte sectors. Sector 0 contains bytes 0 to 2047,
sector 1 contains bytes 2048 to 4095, and so on.

2.1 The beginning of the media

The system first reads sectors 0x10 and 0x11. Sector 0x10 always contains the
[SO9660 Primary Volume Descriptor, describing the game media. The ISO9660
Primary Volume Descriptor gives the name of the media, in a 32-byte field at offset
40. If this is present, not entirely whitespace, and not CDROM or cdrom, it is taken
to be the game’s name.

Savegame memory will be allocated and named automatically according to the
name given in the Volume ID of the PVD. (If the name is not present, or starts with
the character — (0x2D), no savegame memory will be allocated.)

Sector 0x11 always contains the El Torito Boot Volume Descriptor, describing
the boot information. The El Torito Boot Volume Descriptor, from sector 0x11, is
used to locate an El Torito Boot Catalog. The El Torito Boot Volume Descriptor
must contain the magic value EL TORITO SPECIFICATION at offset 7. It also
contains the sector number of the El Torito Boot Catalog, as a 32-bit little-endian
number at offset 0x47. This is taken to be in units of 2048 bytes, from the beginning
of the game media.

2.2 The boot catalog

The system reads the El Torito Boot Catalog from the sector number given in the El
Torito Boot Volume Descriptor. Only one sector is read, even though El Torito allows
for larger boot catalogs. The Boot Catalog consists of 32-byte entries, naturally-

aligned. The first entry must start with the following one-byte magic values:
Offset Value

0x00 O0Ox01
Ox1E 0x55
Ox1F OxAA

Following this, entries begin with a one-byte value specifying their type, a single
byte at offset 0.

Types 0x01, 0x90, or 0x91 begin a section of the Boot Catalog, and contain a
Platform ID for entries that follow. The platform ID is located at offset 1 in such an
entry. The platform ID for a Neki32 application is 0x92. A boot entry following this
platform will contain game code. The platform ID for a Neki32 system-update bundle
is 0x22. A boot entry following this platform will contain packaged system-update
data from Nekisoft.

Type 0x88 indicates a bootable entry. The platform ID of the bootable entry is
given in a preceding section entry. The length of the bootable payload is given as a
2-byte little-endian value at offset 6. The length is given in units of 512 bytes. The
location of the bootable payload is given as a 4-byte little-endian value at offset 8.
The location is given in units of 2048 bytes, relative to the beginning of the game
media.

The first bootable entry of platform ID 0x92 is taken to be the game executable
to boot. The first bootable entry of platform ID 0x22 is taken to be the system
update package to examine, if any. The format of the system update package is not
described here. It should be obtained from Nekisoft and included verbatim.

2.3 The game executable

Once the location of the game executable is found in the El Torito Boot Catalog, the
system begins to load it. The game executable is loaded into a new virtual memory
space, by itself. The virtual memory space starts at address 0 and extends to 24M -
1. Data is filled to the size specified in the El Torito Boot Catalog. The remaining
memory is all 0x00. As the size is given as a 16-bit number in units of 512 bytes, up
to 32MBytes could be specified. However, a game on Neki32 is limited to 24MBytes
of memory.

After loading, the zero page is checked for an appropriate magic number. The
first eight bytes should be NNEARM32. The second eight bytes should be the entry
point as a 64-bit little-endian value. This value must always be 0x1000.

Once the game executable is loaded, the game process starts executing it from
0x1000, with all registers zeroed.

2.4 Failures

If any of these steps encounters a missing magic-number or a failure to read the game
media, the booting process stops. Instead of launching the game, the console will
drop to its system menu. The system menu allows users to see the data saved on
their console or turn it off.

If the game boots successfully, it should not exit. The user ends the game by
turning the console off. If the game process terminates after being started, the system
will try again to launch it, up to 3 times in total.

3 The instruction set

The game executable runs in user-mode on an ARMv5HTE processor, including both
ARM and Thumb modes. The system will always start executing the game in ARM
mode, with the program counter at 0x1000. Thumb interworking instructions may
be used to transfer into and out of Thumb mode.

No floating-point instructions are available. Floating-point emulation works well
enough to run Quake, at least, if you really want that.

The udf 0x92 instruction, encoded as 0xe7£009f2, is used to trigger system-
calls. Other udf instructions should not be used. (If you are curious, we use a udf
instruction because GDB ARM refuses to single-step over an svc instruction.) This
implies that system-calls must be made from ARM mode, not Thumb mode.

10

4 Signals

The kernel of Neki3d2, “PVMK”, provides virtualized handling of processor excep-
tions. This means that an illegal memory access or invalid opcode is caught by the
operating system. When this happens, a signal is made pending on that process.

In a game process, all signals are masked, and will not be handled. When an
exception causes a masked signal to become pending, the program cannot continue.
If a debugger is attached, the system will stop for debugging. Otherwise, the process
is killed and the game crashes.

5 Nonvolatile memory system (NVMs)

The Neki32 console includes memory for savegames. This allows games to be dis-
tributed on common SD cards made read-only, without requiring partially-read-only
cards. Each game can save up to 128KBytes of data. The console has space for 30
such savegames, in a region of 4MBytes of NOR Flash.

To use NVM saving, a game must have a valid title set in the Volume ID of its
[SO9660 Primary Volume Descriptor. The title must be nonempty, not all spaces,
and not CDROM or cdrom. Additionally, the title must not start with a — character.
Games that do not use NVM saving should start their Volume ID with a — character.

When the system reads a valid name from the Primary Volume Descriptor, it will
set up NVM saving before booting the game. If insufficient space is available, the
user will be warned at that time. They can continue anyway or clean up space. This
all happens before launching the game.

Once the game is running, it may assume that NVM saving is available and
working. Generally, the _sc_nvm_save and _sc_nvm_load calls will not fail. The
game can freely load and store a region of up to 128KBytes. There is no need to
handle no-space-available errors or to prompt the user about making space. If the
user chooses not to make space, a temporary buffer in RAM is accessed by these
system-calls instead.

NVM records are protected by SHA256 hashes and double-buffered. A single free
record is always kept for saving the new version of an existing record. This means
that interrupted writes will not corrupt the existing data. The old version will be
used until the new version is written entirely. There is no need for a game to warn
the user about interrupting a save.

The first time a game starts, before any data is saved, it is still valid to call
_sc_nvm_load. The savegame will have been created during the boot process. A
newly allocated savegame will contain 0 bytes when read back.

11

6 System calls

System-calls are used to access hardware features in a backward- and forward-
compatible way. A total of 16 different system-calls are available to Neki32 games.

To run a system call, first place its inputs in CPU registers. The call number is
passed in register r0. Parameters, if any, are passed in registers r1 to r5. Then, use
the udf 0x92 instruction. The kernel will perform the requested operation. The
return value is stored in r0 after the call finishes.

Typically, system-calls will return a negative error number if they fail, or a non-
negative value on success. They may read or write in the memory of the caller.

System-calls are nonblocking. If a long-term operation is started, its system-call
returns with —_SC_EAGATIN. The call can be repeated until it completes, returning a
successful result. In the mean time, the _sc_pause system-call can be used to block
the caller. For example, the following code would wait for any input events:
_sc_input_t mybuf[8] = {0};
while (_sc_input (mybuf, sizeof (mybuf[0]), sizeof (mybuf)) == -_SC_EAGAIN)
{

_sc_pause () ;

}

6.1 Basics

These system-calls relate to the general usage of the system-call interface.

6.1.1 _sc_none

Called with: r0 = 0x00.
Does nothing. This enters and exits the kernel as usual but does nothing else.

e No parameters.

e No return value.

6.1.2 _sc_pause

Called with: r0 = 0x01.

Waits until any event happens to the calling process, or has happened since this call
was last made. In this context, "any event” refers to the completion or failure of a
prior system-call which returned —_SC_EAGAIN.

12

If an event has already occurred, the call returns immediately. If no event has
occurred, the calling process will not be scheduled again until it does. This is the only
way to actually block a process at the kernel level. Note that it is likely this system-
call returns spuriously. It should be used in a loop if busy-waiting on completion of
a system-call which is returning —_SC_EAGAIN.

e No parameters.

e No return value.

6.1.3 _sc_print

Called with: r0 = 0xBO.
Prints output to the text-mode screen. Prints the sequence of bytes at buf_ptr until
a terminating NUL. Currently supports very few control sequences. Basically only
used for debugging. Returns the number of bytes printed.

Note that this does not cause the text-mode screen to be displayed. Call sc_gfx flip
with parameters of 0 to display the text-mode screen.

e rl : const charx buf ptr
Location of data to print.

e Returns : int

The number of bytes printed, or a negative error number.

6.2 Game input/output

These system-calls relate to the user’s gamepads and television. No setup or config-
uration is necessary to use these system-calls. Each program starts with the audio-
visual and input peripherals ready to use.

6.2.1 _sc_getticks

Called with: r0 = 0x02.
Returns the number of milliseconds since the system was booted. Does not fail.

e No parameters.

e Returns : int
The number of milliseconds elapsed since boot.

13

6.2.2 _scgfx flip

Called with: rO0 = 0x30.
Enqueues a change of the video front-buffer. The given buffer will become the front-
buffer at the next vertical-blanking interval.

If the given mode is 0, text-mode will be displayed, and buffer must be given
as NULL. If the given mode is nonzero, a valid buffer must be specified, and large
enough for one full-screen image.

Returns the address of the buffer currently displayed. The return value may be 0
if the current front-buffer belongs to another process. This call may occasionally take
effect immediately, and return its buffer parameter, if the call is made just before
vertical blanking.

The following mode values are allowed:

Mode Number Description

_SC_GFX_MODE_TEXT 0 No framebuffer; kernel text mode only
_SC_GFX_MODE_VGA_16BPP 1 640x480@60Hz RGB565, 1280 bytes/line
_SC_GFX_MODE_320X240_16BPP 2 320x240@60Hz RGB565, 640 bytes/line

e rl : int mode
The video mode in which to display the new buffer.

e r2 : const void x buffer
The location of the buffer in memory to display.

e Returns : int
The currently-displayed image buffer, or a negative error number.

6.2.3 _sc_snd play

Called with: r0 = 0x60.
Enqueues audio samples for playback. Samples are read from the given buffer and
copied into the kernel for playback. Either the whole buffer is consumed or none is.
The caller may specify the maximum amount of audio to buffer in the kernel. This
allows trading latency for stability. Returns the number of bytes the kernel has still
buffered on success, or a negative error number.

The following mode values are allowed:

Mode Number Description
_SC_SND_MODE_SILENT 0 Stops all sounds
_SC_SND_MODE_48K_16B_2C 1 LPCM, 48KHz, 16b left-then-right, native endian

14

e rl : int mode
The audio format of the data in the buffer.

e r2 : const void % chunk
The location of the buffer in memory to enqueue.

e r3: int chunkbytes
The number of bytes in the buffer to enqueue.

e r4: int maxbuf
The maximum number of bytes to enqueue in the kernel.

e Returns : int
Current buffer usage (bytes) on success, or a negative error number.

6.2.4 _sc_input

Called with: r0 = 0x50.
Reads input events from the system into the given buffer. Returns how many events
were filled in the buffer, or a negative error number.
The first byte of any event is a character indicating its type. Presently, only the
following are defined:
First byte Total bytes Event type

'A" (0x41) 4 Player 1 digital gamepad input
"B’ (0x42) 4 Player 2 digital gamepad input
rcr (0x43) 4 Player 3 digital gamepad input
"D’ (0x44) 4 Player 4 digital gamepad input

The input events defined currently follow the format below:
Offset Size Field

0 1 Type
1 1 Unused
2 2 Buttons Pressed

The ”buttons pressed” field is a bitmask where a 1-bit is a pressed button and a
0-bit is a released button. The buttons use the following indexes:

15

Button Index Bitmask

Up 0 0x0001
Left 1 0x0002
Down 2 0x0004
Right 3 0x0008
A 4 0x0010
B 5 0x0020
C 6 0x0040
X 7 0x0080
Y 8 0x0100
Z 9 0x0200

Start 10 0x0400

Mode 11 0x0800
This system-call will typically return an input event per frame per controller port.
The buffer should be at least 4-byte-aligned.

e r1: sc.input.t * buffer ptr
The location of the buffer to store the input events.

e r2 : int bytes_per_event
The number of bytes in each element of the buffer.

e r3: int bytes max
The total size of the buffer in bytes.

e Returns : int
The number of events filled or a negative error number.

6.3 Data access
6.3.1 _sc_disk_read2k

Called with: r0 = 0x91.

Reads 2048-byte sectors from the disk into the given buffer. The sector number and
count are given in units of 2KByte, i.e. not a byte-offset. Returns 0 on success or a
negative error number. Any partial completion is considered a failure. May return
—_SC_EAGAIN if the operation has started and will finish later.

e rl : int sector_num
Which sector to load from the disk, in units of 2048 bytes.

16

e r2 : void % buf2k
The location in memory to store the data being read.

e r3: int nsectors
The number of 2048-byte sectors to load.

e Returns : int
0 on success, or a negative error number.

6.3.2 _sc_disk_write2k

Called with: r0 = 0x92.

Writes 2048-byte sectors to the disk from the given buffer. The sector number and
count are given in units of 2KByte, i.e. not a byte-offset. Returns 0 on success or a
negative error number. Any partial completion is considered a failure. May return
—_SC_EAGAIN if the operation has started and will finish later.

e rl : int sector_num
Which sector to write on the disk, in units of 2048 bytes.

e r2 : const void x buf2k
The data in memory to store onto the disk.

e r3: int nsectors
The number of 2048-byte sectors to store.

e Returns : int
0 on success, or a negative error number.

6.3.3 _sc_nvm_save

Called with: r0 = 0x81.

Writes data to the configured nonvolatile memory record, overwriting all previous
data. The contents should be in the buffer at “data”, of length “len”. Writes are
atomic and update the whole record each time. No partial writes are possible. If
no record is configured, this call writes to a temporary per-process buffer instead.
Returns the number of bytes written on success or a negative error number.

e rl : const void = data
Location of data in memory to store to nonvolatile memory.

17

e r2 : int len
How many bytes to store.

e Returns : int
The number of bytes written or a negative error number.

6.3.4 _sc_.nvm_load

Called with: r0 = 0x82.

Reads from the configured nonvolatile memory record into the given buffer. The
buffer to place the results in is at “buf”’, of length “len”. Reads are protected by
SHA256; corruption will result in the file being lost (-_SC_ENOENT). If no record is
configured, this call reads from a temporary per-process buffer instead. Returns the
number of bytes read on success or a negative error number.

e rl: void * buf
The location in memory to put the data from nonvolatile memory.

e r2: int len
How many bytes to load.

e Returns : int
The number of bytes read or a negative error number.

6.4 Process setup
6.4.1 _sc_env_save

Called with: r0 = 0x08.

Appends the given data to the kernel’s argument /environment buffer for the calling
process. Subsequent calls append to the buffer; call with buf=len=0 to reset the
buffer. This buffer is preserved across calls to exec() and mexec_apply(). Conven-
tionally it should contain a series of NUL-terminated argument strings, then an extra
NUL, then a series of NUL-terminated environment strings. Returns the number of
bytes written or a negative error number.

e rl : const void x buf
The data in memory to store to the environment buffer.

e r2: int len
How many bytes to store.

18

e Returns : int
The number of bytes written or a negative error number.

6.4.2 _sc_env_load

Called with: rO0 = 0x09.

Reads from the kernel’s argument /environment buffer for the calling process. Writes
the result into the calling process’s user memory, usually after an exec() or mexec_apply().
Unlike _sc_env_save, starts from the beginning each time it’s called. Returns the
number of bytes copied or a negative error number.

e rl: void = buf
The location in memory to put the data from the environment buffer.

e r2 : int len
How many bytes to load.

e Returns : int
The number of bytes read or a negative error number.

6.4.3 _sc_mexec_append

Called with: r0 = 0xALl.

Appends the given data to the kernel’s pending memory image for the calling pro-
cess. Subsequent calls append to the buffer; call with buf=len=0 to reset the buffer.
The first 4KBytes appended are always inaccessible afterwards and can contain any-
thing. The memory at address 0x1000 (+4KBytes in) is where execution starts
after _sc_mexec_apply. Returns the number of bytes appended on success. Returns
a negative error number if a failure occurs before any bytes were appended.

e rl : const void * buf
The data in memory to append to the new memory space.

e r2: int len
How many bytes to append.

e Returns : int
The number of bytes appended or a negative error number.

19

6.4.4 _sc.mexec_apply

Called with: r0 = 0xA2.
Concludes an in-memory exec and replaces the current with the pending image. Does
not return and does not fail. If there is no pending image, the caller exits as though
killed by _SC_SIGSEGV.

e No parameters.

e This call does not return.

6.4.5 _sc_exit

Called with: r0 = 0x07.
Generally obliterates the calling process. Optionally reports a signal that was re-
sponsible for its demise.

e rl: int exitcode
The return value to report to the parent process.

e r2 : int signal
The signal number responsible for the exit, if any. Zero otherwise.

e This call does not return.

6.5 Error codes

The following error codes may be returned by the kernel. These values are defined
as positive integers here. When returned by a system-call, they are usually negated.
For example, a system-call which fails because there is not enough memory might
then return -12.

20

Error Number Description

_SC_EPERM 1 Operation not permitted.
_SC_ENOENT 2 No such file or directory.
_SC_ESRCH 3 No such process.

_SC_EIO 5 I/O error.

_SC_ENXIO 6 No such device or address.
_SC_E2BIG 7 Argument list too long.
_SC_ECHILD 10 No child processes.
_SC_EAGAIN 11 Resource unavailable, try again.
_SC_ENOMEM 12 Not enough space.
_SC_EFAULT 14 Bad address.

_SC_EINVAL 22 Invalid argument.
_SC_EFBIG 27 File too large.

_SC_ENOSPC 28 No space left on device.
_SC_EROF'S 30 Read-only file system.
_SC_ENAMETOOLONG 36 Filename too long.
_SC_ENOSYS 38 Functionality not supported.

6.6 System calls by number

The following table lists all system-calls usable by a game, sorted by call number.

Number Name

0x00 _sc_none

0x01 _sc_pause

0x02 _sc_getticks
0x07 _sc_exit

0x08 _sc_env_save
0x09 _sc_env_load
0x30 _sc_gfx_flip
0x50 _sc_input

0x60 _sc_snd._play
0x81 _sc_nvm_save
0x82 _sc_.nvm_load
0x91 _sc_disk_read2k
0x92 _sc_disk_write2k
OxAl _sc_mexec_append
OxA2 _sc_mexec_apply
0xBO _sc_print

21

7 Timing

Most video games will need some source of timing information to run correctly.
Neki32 offers a few sources of timing that can be used by a game.

7.1 Timing sources

This section covers the valid, proper timing sources that a game can use.

7.1.1 Timing ticks elapsed

The most direct timing source is the return value of _sc_getticks. This system-
call returns the number of milliseconds since the system booted. It is driven by a
hardware timer that is always configured for 1ms intervals.

By tracking the change in _.sc_getticks, a game can track elapsed time.

Note that milliseconds will not divide evenly into video frames. Note also that
this count may overflow after about 25 days.

7.1.2 Timing sound samples played

Timing can be derived from the amount of audio data sent by the system.

A game can enqueue sound samples for playback with _sc_snd_play. These
samples are played back at a known rate - at the moment, always 48000 per second.

The _sc_snd_play system-call returns the number of samples currently in the
queue. It also bails out, returning —_SC_EAGAIN, if too many samples are enqueued
already.

Either one of these situations provides information about how many samples have
been played.

A game can track elapsed time by how many times it has successfully enqueued
some number of audio samples. To gain precision, it could also inspect how many
samples are currently enqueued each time.

7.1.3 Timing video frames flipped

Timing can be derived as well from how many video frames have been presented.
This approach is very common in older console games.

A game can call _sc_gfx_flip to enqueue a change of the video front-buffer.
The system-call returns the location of the buffer currently being displayed. The

22

buffer displayed - and therefore the return value - only changes when the video
display enters vertical-blanking.

Therefore, a game can see how many vertical-blanking intervals have elapsed, in
how many times it can change the front-buffer.

Note that it is possible to "miss” blanking intervals if the game is checking less
often than 1/60s (in other words, if the game is running too slow).

7.2 Not timing sources

There are also some features of Neki32 which might seem like they provide timing,
but do not. Games which attempt to use this approaches for timing are not expected
to work on future software or hardware revisions.

7.2.1 Not a timing source: The CPU

Neki32 currently ships with a single known ARM9 CPU. However, for future-compatibility,
do not assume that the CPU speed is known. Later hardware revisions may run
slightly faster in some scenarios. Larger caches or different memory technologies
may also impact instruction throughput.

Do not assume that timing based on execution speed is reliable.

7.2.2 Not a timing source: input events from sc_input

At the moment, Neki32 reports a consistent number of input events per video frame.
However, this is not guaranteed. More or less input events may be reported in a
given time.

Do not assume that one input report corresponds to one video frame.

7.2.3 No rational relationships

Current Neki32 firmware tends to have a rational relationship between the different
timing sources. They are all derived from the same 24MHz crystal and therefore
have fixed ratios to each other. However, this is not guaranteed.

Do not assume that a given number of video frames, audio samples, or timer ticks
will bear a fixed relationship to other timing sources.

23

8 The C SDK

The C SDK is an easy way to start writing programs for Neki32. It provides a
runtime environment that behaves like a POSIX-compatible system, such as Linux
or FreeBSD. The SDK includes the following parts.

8.1 SDK Contents

8.1.1 Compiler Wrappers

The compiler wrappers help to invoke GCC or LLVM with the right options for
building a Neki32 executable. You must have an appropriate GCC or LLVM compiler
installed, of course. It needs to be able to target the ARMv5TE architecture.

8.1.2 C Runtime

The C Runtime is what initially starts running when the Neki32 kernel loads your
program. It initializes the environment and filesystem, and calls your main function.
It also contains the linker configuration, so the linker can make an executable in the
right format (a flat 0-based binary).

8.1.3 Picolibce

This is a port of PicoLibC to the Neki32. PicoLibC is a portable C Standard Library.
It provides functions like printf and strepy.

8.1.4 PVMK OS library

The OS Library is a link between the PicoLibC code and the system-calls available
on the Neki32. It handles some things that aren’t implemented in the “PVMK”
kernel itself.

For example, the system-call interface on Neki32 provides block-level access to
sectors from the game card. The system doesn’t care what kind of filesystem is on
the card. So, when your application calls fopen(), someone has to go understand the
filesystem on the card and find the file you wanted. The code is in this library, so
you can open/read/close like normal.

24

8.1.5 Updates Package

This is the official Neki32 system-update package from Nekisoft. This can be included
on game media to ensure that players have the latest system software. Note that a
license is required to distribute this - you must adhere to our software quality and
marketing guidelines. See the licensing section for more information.

8.1.6 SDL System-Call Shims

This is an implementation of some system-calls on top of the SDL2 library. Using
this, instead of the real system-call library, you can build and test your code on a
desktop Linux machine. Then, you could compile the same application for Neki32
with minimal changes.

9 Examples

9.1 Development workflows
9.1.1 Just Assembly

It is possible to make a bootable Neki32 game card using only an ARM assembler.
The executable code can be written in assembly, of course. The same assembly can
also be used to make structures for ISO9660 and El Torito, referencing the executable
code. For simplicity, we can place the executable at the beginning of the disk image.
Then, a byte location in the disk, the executable, and the process memory are all
the same. The output of the assembler is directly used as the disk image.

This approach can be used for simple games which fit entirely into the 24MByte
RAM budget of the Neki32. That’s 5 times bigger than the biggest Genesis cartridge!

Source code for this example is found in examples/allasm in the SDK. It
doesn’t require anything but GNU Make and the GNU Assembler for ARM.

9.1.2 Assembly and some Data

A program running on the Neki32 can load more data off the game card. The system-
call _sc_disk_read2k is used to perform this operation. The previous example can
be extended to load more data off the game card, after the boot program is already
running.

This approach can be used for games which swap out graphical assets in simple
ways. It has some advantages over using a filesystem - namely, that all locations

25

are resolved at link-time. This makes the game a bit faster and more reliable. No
overhead is spent accessing file metadata.

Source code for this example is found in examples/asmdata in the SDK. It
doesn’t require anything but GNU Make and the GNU Assembler and linker for
ARM.

9.1.3 Assembly Accessing a Filesystem

For games with lots of data, it is helpful to keep the data in a filesystem. This aids
in managing the data during development, and makes the environment more similar
to a desktop workstation.

The ISO9660 filesystem is simple enough that it can be parsed from assembly
code. The assembly code can then access any number of different files included in
the ISO9660 filesystem.

In this case, the assembler is used to make an executable by itself (we call this
format a “no-nonsense executable”, or NNE). Then, mkisofs is used to put this
executable in a bootable El Torito / ISO9660 image. Other files containing data
are also placed in the image. Once running, the code can look through the ISO9660
filesystem to find its data files.

Source code for this example is found in examples/asmisofs in the SDK. It
requires GNU Make and the GNU Assembler and linker for ARM, as well as the
mkisofs utility.

9.1.4 Adding some Freestanding C

It is unlikely that you want to write an entire game in assembly. The previous
examples can be extended by linking them against freestanding C code. This provides
a barebones environment, lacking a standard library. It does, however, allow writing
C while retaining control of the entire resulting executable.

Source code for this example is found in examples/freestanding in the
SDK. It requires GNU Make and the GNU Assembler and linker for ARM, as well
as the mkisofs utility, and the GNU C Compiler for ARM.

9.1.5 Using the C SDK Instead

For convenience, a C SDK is provided which gets the basics of a C runtime envi-
ronment handled. It includes a port of Picolibc with an ISO9660 implementation
providing file access via _sc_disk_read2k. It also includes startup files necessary
to call main () in a sane way.

26

Source code for this example is found in examples/sdkusage in the SDK. It
requires the SDK to be set up properly, including the GNU ARM toolchain and the
C Runtime and C Standard Library for Neki32.

9.2 System call usage
9.2.1 Reading inputs

It is straightforward to read user input on the Neki32. A single system-call is used
to retrieve user input as a series of events. Each event starts with a byte identifying
what type of event it is. Then, event data follows.

A single invocation of the system-call may return multiple events in an array.
The caller specifies the size of each array element, and the overall size of the array.
The game knows, of course, the largest event it will handle, and can size its array
elements appropriately. Array entries are zero-filled if the event is smaller. Events
are truncated if they do not fit.

Right now all events are 4 bytes in length. A single character identifies which
controller port is considered, “A”, “B”, “C”, or “D” (ASCII codes 0x61, 0x62, 0x63,
0x64). Then, one dummy byte is usually zero. Then a 16-bit value identifies which
buttons are pressed as a bit-map.

The format of the input event and the button bitmasks are defined in sc.h in
the C SDK. This example reads input from all 4 players and displays their control
data on screen.

Source code for this example is found in examples/showinput in the SDK.
It requires the SDK to be set up properly, including the GNU ARM toolchain and
the C Runtime and C Standard Library for Neki32.

9.2.2 Double-buffered animation

Double-buffering can be used to synchronize the game code and video output. This
is the simpler option, in contrast to triple-buffering.

Double-buffering means that memory for two video frames is used. At any time,
one is used by the CPU to draw the next frame, while the other is being sent to the
TV. The buffer that the CPU accesses is called the back buffer, and the buffer being
sent to the TV is the front buffer. Note that it takes almost an entire frame of time,
to send that one frame of data to the TV.

The TV is given some free time between bursts of video data, called “blanking”.
When the TV is in blanking, no data is sent to it. At the end of each line in a frame,

27

there is a “horizontal blanking” time. Horizontal blanking is very short in duration.
At the end of each frame, there is a “vertical blanking” time.

During vertical blanking, there is about 1ms when no data is sent. A complete
frame has already been transmitted. At this time, the buffers can be interchanged,
called “swapping” or “flipping” the buffers. Then the CPU can re-draw to the buffer
which was previously displayed, as the next one is sent to the TV. In this way, a
series of complete frames is sent to the TV.

In double-buffering on Neki32, the _sc_gfx_flip system call is used in a loop
with _sc_pause. Until _sc_gfx_flip indicates that the desired buffer is being
displayed, the game continues to pause. Effectively, the game blocks on the “flip”
syscall and proceeds when the new image is displayed.

Source code for this example is found in examples/dblbuf in the SDK.

9.2.3 Triple-buffered animation

Triple-buffering is more complicated than double-buffering, but has some speed ad-
vantages. At any time, one image is being sent to the TV, one is being drawn by the
CPU, and one is kept spare.

In double-buffering, if the CPU has finished drawing a frame, it must wait for
the prior frame to be entirely sent to the TV. In triple-buffering, an additional
spare buffer is kept. Therefore, the CPU can move on to render the following frame
immediately. If the CPU is running fast, it can continue to render a series of frames,
independently of the TV scanout. It ping-pongs between the two buffers which are
not being sent to the TV. Whenever one frame is done being sent to the TV, there
is always another complete frame ready to go.

This requires three frame buffers to be allocated instead of two, of course. When
_sc_gfx_flip is called, the game does not wait on its result. Instead, the game
evaluates the situation and continues each time it calls _.sc_.gfx_flip. The pa-
rameter to _sc_gfx_f1lip will be enqueued for display at the next vertical-blanking
interval. The return value from _sc_gfx_flip is the buffer currently displayed, at
that moment. Therefore, the game finds whichever buffer is neither of those. It
continues rendering into that one.

Source code for this example is found in examples/tplbuf in the SDK.

9.2.4 Saving saves

It is simple to save the player’s progress to Nonvolatile Memory in the console.
An area of memory can be allocated in the game process, big enough to hold
the saved data. When the game starts, the system-call _sc_nvm_load is used to

28

populate the area with the saved data. Then, whenever appropriate, the system-call
_sc_nvm_save can be used to store it back to the console.

It is only necessary to check, on start-up, that the region is not all 0x00. In this
case, no data was previously saved, and the savegame region should be initialized in
RAM before calling _sc_nvm_save.

It is not necessary to handle failures to save, or corruption from interrupted saves.
The system will make sure there is space allocated, at boot, before the game executes.
The system will keep checksums and double-buffer the saved data, to protect against
data loss. Physical writes are ordered to ensure reliability.

Source code for this example is found in examples/nvmsave in the SDK.

9.3 SDK features

The C SDK includes a mostly-complete C standard library that enables many POSIX-
like operations.

9.3.1 Writing to files

Ordinarily, we recommend that a game card is permanently write-protected, to pro-
tect against damage. Savegames can be written to the Nonvolatile Memory in the
console in this case, so no special SD card is needed. However, the system supports
writing back to game cards if you want to.

The SDK includes support for overwriting file contents on an ISO9660 filesystem.
Files cannot be created or deleted, or their length changed. However their contents, at
their existing location and length, can be modified. The actual writes are performed
when the SDK calls _sc_disk write?2k.

The example in examples/rwcard uses this to save data which the user has
modified. It contains an existing file in the ISO9660 image, called SAVE.BIN, whose
contents are modified at runtime.

10 Common errors
This section contains examples of why a program may not work as expected.

10.1 System call failures

Most system-calls in PVMK will always complete predictably if given valid param-
eters. Unexpected failures are rare due to the restricted nature of the environment.

29

An enumeration of system-calls and potential failures follows.

10.1.1 0x00 _sc_none

e This call cannot fail.
e In some sense, it also cannot succeed.

10.1.2 0x01 _sc_pause

e This call cannot fail.

e Note that this call may return spuriously for a number of reasons. A previous
system-call may have triggered an unpause which has been ignored. Or, the timing
of a following system-call may not be predictable.

e To block waiting on a system-call result, retry the call, and use _sc_pause in a
loop. Call pause if and only if an —_SC_EAGATIN result is returned from the call in
question.

10.1.3 0x02 _sc_getticks

e This call cannot fail.

e Note that this returns ticks since the system booted, not since the program began
executing.

e When using the debugger, this may also show discontinuities.

e The units are milliseconds. As the value is 32-bit, the tick count may overflow if
the user leaves the console running for 25 days. Games do not need to handle this,
but may choose to handle the overflow or to crash.

10.1.4 0x07 _sc_exit

e This call cannot fail.
e The system may try to re-launch a game that exits, up to 3 times.

30

10.1.5 0x08 _sc_env_save

This call can fail if the buffer is not in valid memory.

This call can fail if the environment buffer is already full.

This call can fail if the pointer is NULL but the length is nonzero.
This call can fail if the length is zero but the pointer is non-NULL.
This call can fail if the length is too large for the environment at all.
Note that subsequent calls append to the buffer, not starting again.

10.1.6 0x09 _sc_env_load

This call can fail if no data is in the environment buffer already.

This call can fail if the buffer is not in valid memory.

This call can fail if the given buffer is too small for the environment stored.
Note that subsequent calls do not continue reading from the buffer, instead start-

ing again.

10.1.7 0x30 _sc_gfx flip

This call can fail if an invalid buffer pointer is given.

This call can fail if an invalid mode value is given.

This call can fail if the mode is “text” mode (0) but the buffer is non-NULL.
This call can fail if the mode is not “text” (nonzero) but the buffer is NULL.
This call can occasionally return the buffer it was given, immediately. This hap-

pens if the call is made just as the system enters vertical blanking.

This call can return 0 if the currently-displayed buffer belongs to another process.

10.1.8 0x50 _sc_input

This call can fail if the buffer is not in valid memory.
This call can fail if the buffer sizes are zero or negative.
This call can fail if the buffer size overall is not a multiple of the buffer element

size.

31

10.1.9 0x60 _sc_snd play

This call can fail if the chunk size is too large for the kernel to buffer at all.
This call can fail if the maximum buffered size is set too low.

This call can fail if the buffer is not in valid memory.

This call can fail if the mode given is invalid. The only valid mode currently is 1.

10.1.10 0x81 _sc_nvm_save

e This call can fail if the buffer pointer and length do not refer to valid memory.

e This call can fail if the buffer is oversized.

e [f the game did not provide a valid name in its ISO9660 Primary Volume Descrip-
tor, this call will not actually write to nonvolatile memory.

e If the user chose not to make space for the game, this call will not actually write
to nonvolatile memory.

e In cases where no nonvolatile memory record is prepared, this call writes to a
temporary buffer for the process instead.

10.1.11 0x82 _sc_nvm_load

e This call can return 0 bytes if the save record was just created.
e This call can fail for the same reasons as _sc_nvm_save.

10.1.12 0x91 _sc._disk_read2k

e This call can fail if the sector number is invalid.

e This call can fail if the buffer is not in valid memory.

e This call can fail of the number-of-sectors parameter is less than 1 or greater than
12288.

10.1.13 0x92 _sc.disk write2k

e This call can fail if the sector number is invalid.
e This call can fail if the buffer is not in valid memory.
e This call can fail if the card is write-protected.

32

e This call can fail of the number-of-sectors parameter is less than 1 or greater than
12288.

e [t is not recommended to use this call unless the card can be partially write-
protected.

10.1.14 0xAl _sc mexec_append

This call can fail if the pending memory image is already too large.

This call can fail if the given buffer is not in valid memory.

This call can fail if the given buffer is too large for the pending memory image.
This call can fail if the buffer pointer is NULL but the length is nonzero.

This call can fail if the buffer length is zero but the pointer is non-NULL.

10.1.15 O0xA2 _sc.mexec_apply

e This call cannot fail.
e If the pending memory image is not valid, the process will die from a segfault.

10.1.16 0xBO _sc_print

e This call can fail if the buffer is not in valid memory.

10.2 Crashes

A processor exception will result in a signal, killing the game process. The following
things can cause this:

e Accessing an invalid memory location will cause SIGSEGV.

Valid memory locations start at 0x1000 and extend to one byte before the size of
the process. The size of the game process, by default, is always 24x1024x1024 (24
megabytes). If _sc_mexec_apply has been used to load a new program, the process
size is the total number of bytes appended by _sc_mexec_append beforehand. Note
that the caller is required to set the total size of the new process, including the .bss
section, by appending that many bytes. New memory cannot be added to the process
once it is running.

33

e Accessing a misaligned word or halfword will cause STIGBUS.

Memory accesses on ARM must be naturally-aligned. This means that a 32-bit
(word) access must be to an address which is a multiple of 4, and a 16-bit (halfword)
access must be to an address which is a multiple of 2. Otherwise, an alignment-check
fault results and causes this signal.

e Executing an undefined instruction will cause SIGILL.

The Neki32 supports the ARMv5TE instruction set. It additionally uses a single
architecturally-undefined instruction, udf 0x92, to initiate a system-call. Any in-
structions outside this set will trigger an undefined opcode fault and raise this signal.

e System-calls do not work from Thumb mode.

Currently the system only supports the ARM encoding of the udf 0x92 instruction
(0xe7£009£2). Thumb code therefore must switch back to ARM mode to execute
a system-call.

11 Secret Codes

These features of the Neki32 console may assist in development.

11.1 At power-on

The Neki32 console stores its default system software, called Kernel Zero, in read-
only memory. It can also store a single updated version of the system software. If
the updated version is valid, it will be booted automatically instead of the original.
To boot the original version instead of the updated version, hold the Down direction
on controller D while turning the system on.

If system software updates are present on a game card, the system will find the
newest one matching the hardware. It will prompt the user to update if it is newer
than the current version. To force this prompt to always appear, regardless of the
version numbers, hold Y on controller A while turning the system on. To skip this
prompt, regardless of the version numbers, hold X on controller A while turning the
system on.

34

11.2 At the boot menu

Some additional information is available from the Neki32 system menu. To see
additional hardware test features, enter the code “XYZZY” on controller A at the
main menu. To see the version number, and a message about why no game was
booted, hold the Z and Mode buttons on controller A at the main menu.

35

	Introduction
	What is Neki32?
	Technical Specifications
	Overview of a Game
	Game cards
	Executable and environment
	Hardware features

	The boot process
	The beginning of the media
	The boot catalog
	The game executable
	Failures

	The instruction set
	Signals
	Nonvolatile memory system (NVMs)
	System calls
	Basics
	_sc_none
	_sc_pause
	_sc_print

	Game input/output
	_sc_getticks
	_sc_gfx_flip
	_sc_snd_play
	_sc_input

	Data access
	_sc_disk_read2k
	_sc_disk_write2k
	_sc_nvm_save
	_sc_nvm_load

	Process setup
	_sc_env_save
	_sc_env_load
	_sc_mexec_append
	_sc_mexec_apply
	_sc_exit

	Error codes
	System calls by number

	Timing
	Timing sources
	Timing ticks elapsed
	Timing sound samples played
	Timing video frames flipped

	Not timing sources
	Not a timing source: The CPU
	Not a timing source: input events from _sc_input
	No rational relationships

	The C SDK
	SDK Contents
	Compiler Wrappers
	C Runtime
	Picolibc
	PVMK OS library
	Updates Package
	SDL System-Call Shims

	Examples
	Development workflows
	Just Assembly
	Assembly and some Data
	Assembly Accessing a Filesystem
	Adding some Freestanding C
	Using the C SDK Instead

	System call usage
	Reading inputs
	Double-buffered animation
	Triple-buffered animation
	Saving saves

	SDK features
	Writing to files

	Common errors
	System call failures
	0x00 _sc_none
	0x01 _sc_pause
	0x02 _sc_getticks
	0x07 _sc_exit
	0x08 _sc_env_save
	0x09 _sc_env_load
	0x30 _sc_gfx_flip
	0x50 _sc_input
	0x60 _sc_snd_play
	0x81 _sc_nvm_save
	0x82 _sc_nvm_load
	0x91 _sc_disk_read2k
	0x92 _sc_disk_write2k
	0xA1 _sc_mexec_append
	0xA2 _sc_mexec_apply
	0xB0 _sc_print

	Crashes

	Secret Codes
	At power-on
	At the boot menu

